

n-BalanceTM Current Mode PWM Controller with Brownout Protection

FEATURES

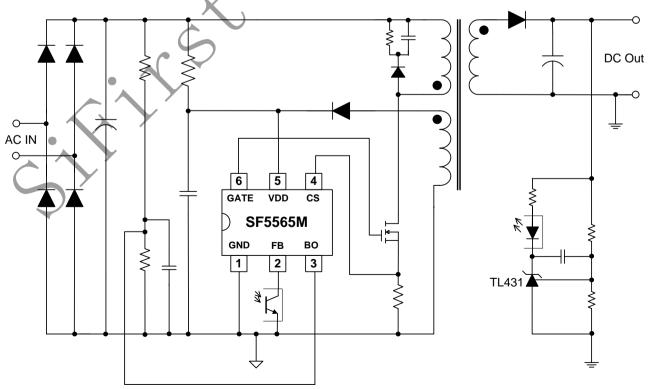
- Less than 100mW Standby Power
- **Brownout Protection (BOP)**
- Proprietary **η**-Balance[™] Control to Boost Light Load Efficiency
- Proprietary "Zero OCP/OPP Recovery Gap" Control
- Proprietary "Audio OCP Noise Free Compensation"
- **Fixed 65KHz Switching Frequency**
- **Built-in Frequency Shuffling**
- **Built-in Soft Start Function**
- Frequency Reduction and Burst Mode Control for Energy Saving
- **Built-in Synchronous Slope Compensation**
- **Cycle-by-Cycle Current Limiting**
- Built-in Leading Edge Blanking (LEB)
- **Current Mode Control**
- **Pin Floating Protection**
- Latch Plug-off Protection
- VDD UVLO, OVP & Clamp

APPLICATIONS

Offline AC/DC Flyback Converter for

- **AC/DC** Adaptors
- **Open-frame SMPS**

GENERAL DESCRIPTION


SF5565M is a high performance, high efficiency, highly integrated current mode PWM controller for offline flyback converter applications.

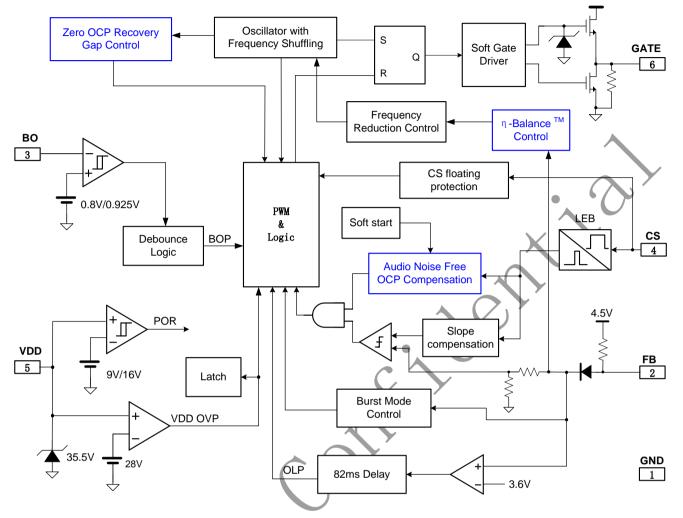
In SF5565M, PWM switching frequency with shuffling is fixed to 65KHz and is trimmed to tight range. When the output power demands decrease, the IC decreases switching frequency based on the proprietary η -**Balance**TM control to boost power conversion efficiency at the light load. When output power falls below a given value, the IC enters into burst mode and can achieve less than 100mW no load power.

The IC can achieve "Zero OCP/OPP Recovery Gap" using SiFirst's proprietary control algorithm. SF5565M also has built in proprietary "Audio Noise Free OCP Compensation", which can achieve constant power limiting and can achieve audio noise operation at heavy loading when line input is around 90VAC.

SF5565M integrates functions and protections of Brownout Protection (BOP), Under Voltage Lockout (UVLO), VDD Over Voltage Protection (OVP), Cycleby-cycle Current Limiting (OCP), Over Load Protection (OLP), Gate Clamping, VDD Clamping, Leading Edge Blanking (LEB), Soft Start, Pins Floating Protection, etc.

In SF5565M, VDD OVP is latch plug-off protection, the other protections are auto-recovery mode. SF5565M is available in SOT23-6 package.

TYPICAL APPLICATION



Pin Configuration

Block Diagram

Absolute Maximum Ratings (Note 1)

Parameter	Value	Unit
VDD DC Supply Voltage	35	V
VDD DC Clamp Current	10	mA
GATE pin	20	V
FB, BO, CS voltage range	-0.3 to 7	V
Package Thermal Resistance (SOT-26)	250	°C/W
Package Thermal Resistance (DIP-8)	90	°C/W
Maximum Junction Temperature	150	°C
Operating Temperature Range	-40 to 85	°C
Storage Temperature Range	-65 to 150	°C
Lead Temperature (Soldering, 10sec.)	260	°C
ESD Capability, HBM (Human Body Model)	3	kV
ESD Capability, MM (Machine Model)	250	V

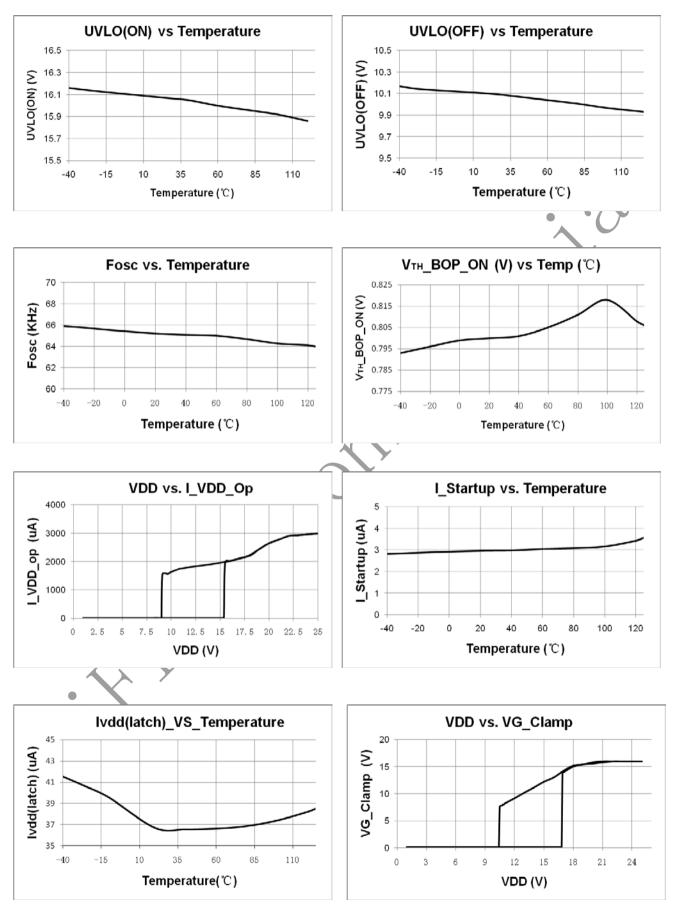
Recommended Operation Conditions (Note 2)

Parameter	Value	Unit
Supply Voltage, VDD	11 to 25	V
Operating Ambient Temperature	-40 to 85	°C

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C, VDD = 18V, if not otherwise noted)$

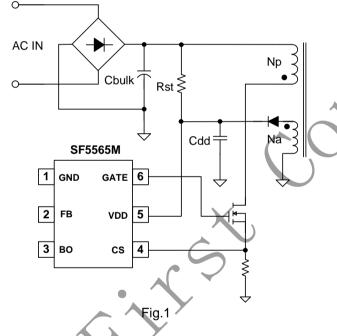
	BV, if not otherwise noted		N/1:00	T	Marr	lln:4
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
	Section (VDD Pin)			1 .		1
UVLO(ON)	VDD Under Voltage Lockout Exit (Startup)		15	16	17	V
UVLO(OFF)	VDD Under Voltage Lockout Enter		9	10	11	V
I_Startup	VDD Start up Current	VDD =UVLO(ON)-1V, Measure current into VDD		3	15	uA
I_VDD_Op	Operation Current	V _{FB} =3V,CL=1nF		2	3	mA
VDD_OVP	VDD Over Voltage Protection trigger		26	28	30	V
V _{DD} _Clamp	VDD Zener Clamp Voltage	$I(V_{DD}) = 10mA$		35.5		
T_Softstart	Soft Start Time			4		mSec
Feedback Input	Section(FB Pin)					
V _{FB_} Open	FB Open Voltage		4.1	4.5	5	V
I _{FB} _Short	FB short circuit current	Short FB pin to GND, measure current		0.35		mA
A _{VCS}	PWM Input Gain	$\Delta V_{FB} / \Delta V_{cs}$		2.0		V/V
VFB_min_duty	FB under voltage gate clock is off.			1.0		V
V _{TH} _PL	Power Limiting FB Threshold Voltage	$c \sim$		3.6		V
T _D PL	Power limiting Debounce Time	Note 3		82		mSec
Z _{FB} _IN	Input Impedance	\sim		12		Kohm
Current Sense In	put Section (CS Pin)					
Vth_OC_min	Internal current limiting threshold	Zero duty cycle	0.70	0.75	0.80	V
Vth_OC_max	Internal current limiting threshold			1.0		V
T_blanking	SENSE Input Leading Edge Blanking Time			250		nSec
T _D _OC	Over Current Detection and Control Delay	CL=1nF at GATE,		65		nSec
Oscillator Section	on V			•	•	•
F _{osc}	Normal Oscillation Frequency		60	65	70	KHz
$\Delta F(shuffle)/Fosc$	Frequency shuffling range	Note 4	-4		4	%
∆f_Temp	Frequency Temperature Stability	-20°C to 100 °C (Note 4)		5		%
Δf_VDD	Frequency Voltage Stability	VDD = 12-25V,		5		%
Duty_max	Maximum Duty cycle		75	80	85	%
F_BM	Burst Mode Base Frequency			22		KHz
Brownout Prote				•	•	
VTH_BOP_ON	Brownout Turn-on trip level		0.77	0.8	0.83	V
VTH_BOP_OFF	Brownout Turn-off trip level		0.885	0.925	0.965	V
Latch Protection			1	1		J
VLatch_release	VDD Latch Release Voltage		5.5	6	6.5	V
lvdd(latch)	VDD Current when	VDD= VLatch_release+1V		40		uA



	latch off					
Gate Drive Output (GATE Pin)						
VOL	Output Low Level	lo = 20 mA (sink)			1	V
VOH	Output High Level	lo = 20 mA (source)	7.5			V
VG_Clamp	Output Clamp Voltage Level	VDD=24V		16		V
T_r	Output Rising Time	CL = 1nF		150		nSec
T_f	Output Falling Time	CL = 1nF		60		nSec

- **Note 1.** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- Note 2. The device is not guaranteed to function outside its operating conditions.
- Note 3. The OLP debounce time is proportional to the period of switching cycle.
- Note 4. Guaranteed by design.

CHARACTERIZATION PLOTS



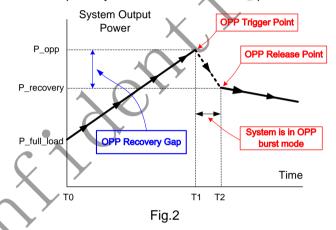
OPERATION DESCRIPTION

SF5565M is a high performance, highly efficiency current mode PWM controller for offline flyback converter applications. The built-in proprietary "Efficiency Equalization" with high level protection features improves the SMPS reliability and performance without increasing the system cost.

• UVLO and Startup Operation

Fig.1 shows a typical startup circuit. Before the IC begins switching operation, it consumes only startup current (typically 5uA) and current supplied through the startup resistor Rst charges the VDD hold-up capacitor Cdd. When VDD reaches UVLO turn-on voltage of 16V(typical), SF5565M begins switching and the IC current consumed increased to 2mA (typical). The hold-up capacitor Cdd continues to supply VDD before the energy can be delivered from auxiliary winding Na. During this process, VDD must not drop below UVLO turn-off voltage (typical 10V). The selection of Rst and Cdd should be a trade off between the power loss and startup time.

• Low Operating Current


The operating current in SF5565M is as small as 2mA (typical). The small operating current results in higher efficiency and reduces the VDD hold-up capacitance requirement.

Soft Start

SF5565M features an internal 4ms (typical) soft start that slowly increases the threshold of cycle-bycycle current limiting comparator during startup sequence. It helps to prevent transformer saturation and reduce the stress on the secondary diode during startup. Every restart attempt is followed by a soft start activation.

• "Zero OCP/OPP Recovery Gap" Control

The definition of OCP or OPP recovery gap of a power adaptor is illustrated in Fig.2. At TO. assuming an adaptor is at full loading mode. If the loading keeps increasing, then the system will output maximum power P_opp, which will trigger OPP protection at the same time. After the OPP protection is triggered, usually the system will enter into the auto-recovery mode, in burst manner. If the demand decreases below svstem power P recovery, then system will enter into normal mode again, as shown in Fig.2. The difference between P_opp and P_recovery is defined as "OPP Recovery Gap", which can cause system startup failure especially in 90VAC full load startup.

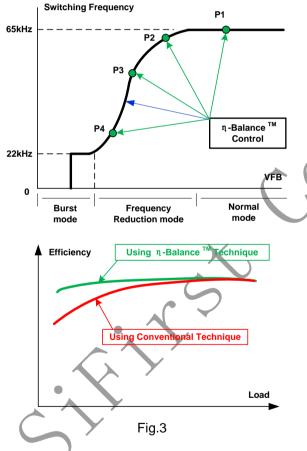
SF5565M can achieve "*Zero OCP/OPP Recovery Gap*" in the whole universal AC input range using SiFirst's proprietary control algorithm.

Synchronous Slope Compensation

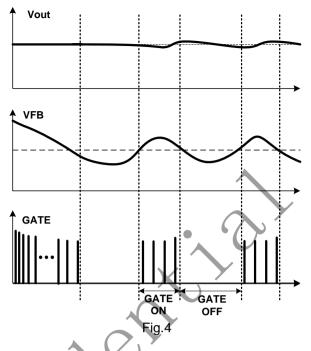
InSF5565M, the synchronous slope compensation circuit is integrated by adding voltage ramp onto the current sense input voltage for PWM generation. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage.

Oscillator with Frequency Shuffling

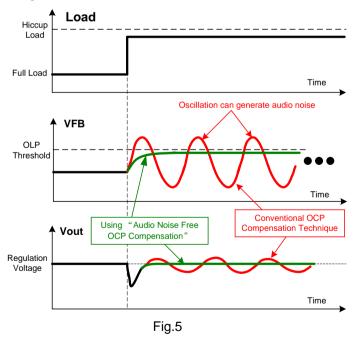
PWM switching frequency in SF5565M is fixed to 65KHz and is trimmed to tight range. To improve system EMI performance, SF5565M operates the system with \pm 4% frequency shuffling around setting frequency.


Leading Edge Blanking (LEB)

Each time the power MOSFET is switched on, a turn-on spike occurs across the sensing resistor. The spike is caused by primary side capacitance and secondary side rectifier reverse recovery. To avoid premature termination of the switching pulse, an internal leading edge blanking circuit is built in. During this blanking period (250ns, typical), the PWM comparator is disabled and cannot switch off the gate driver. Thus, external RC filter with a small time constant is enough for current sensing.


◆ Proprietary ŋ-Balance[™] Control

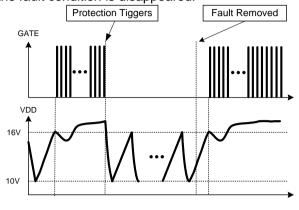
The efficiency requirement of power conversion is becoming tighter than before. These new energy standards focus on the average efficiency of the whole loading range. Therefore, the light load efficiency is becoming more and more important. In SF5565M, a proprietary η -BalanceTM control is integrated to boost the light load efficiency. As shown in Fig.3, when the loading becomes light. the IC will reduce the PWM switching frequency according to an optimized frequency reduction curve. The specific frequency reduction curve and the power at a frequency are determined by the output of η -BalanceTM control. For example, P1 is at full load, P2 is at 75% full load, P3 and P4 are 50% and 25% full load respectively. The η-BalanceTM control can provide higher average efficiency than conventional frequency reduction technique, as illustrated in Fig.3


Burst Mode Control

When the loading is very small, the system enters into burst mode. When VFB drops below Vskip, SF5565M will stop switching and output voltage starts to drop, which causes the VFB to rise. Once VFB rises above Vskip, switching resumes. Burst mode control alternately enables and disables switching, thereby reducing switching loss in standby mode.

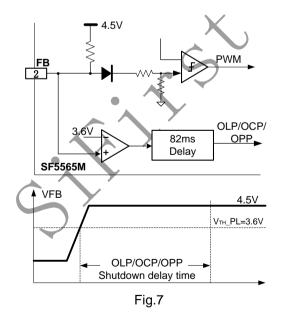
♦ Audio Noise Free OCP Compensation

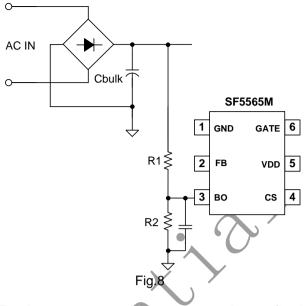
Conventional OCP compensation may have audio noise issue when AC line is around 90VAC and heavy loading. As shown in Fig.5, when increasing from full load to hiccup load at 90VAC, VFB may oscillate in conventional OCP compensation system. The oscillation can generate large audio noise. In SF5565M, a proprietary "Audio Noise Free OCP Compensation" is integrated, which can achieve constant power limiting with no audio noise generated.



Auto Recovery Mode Protection

As shown in Fig.6, once a fault condition is detected, switching will stop. This will cause VDD to fall because no power is delivered form the auxiliary winding. When VDD falls to UVLO(OFF)


(typical 10V), the protection is reset and the operating current reduces to the startup current, which causes VDD to rise, as shown in Fig.4. However, if the fault still exists, the system will experience the above mentioned process. If the fault has gone, the system resumes normal operation. In this manner, the auto restart can alternatively enable and disable the switching until the fault condition is disappeared.


 Over Load Protection (OLP) / Over Current Protection (OCP) / Over Power Protection (OPP) / Open Loop Protection (OLP)

When OLP/OCP/OPP/Open Loop occurs, a fault is detected. If this fault is present for more than 82ms (typical), the protection will be triggered, the IC will experience an auto-recovery mode protection as mentioned above, as shown in Fig.7. The 82ms delay time is to prevent the false trigger from the power-on and turn-off transient.

Brownout Protection (BOP)

By connecting a resistor divider between BO pin and bulk capacitor, the brownout protection (BOP) can be achieved, as shown in Fig.8.

The brownout protection comparator has a fixed reference of 0.8V with a hysteresis of 0.125V. When the BO pin voltage falls below 0.8V and lasts for about 40ms, the BOP protection is triggered and the IC stops switching until this pin voltage goes back to 0.925V. Thus, the AC line BOP triggering voltage and exit voltage are given by:

$$V_{\text{Line}_\text{BOP}_\text{trigger}} = \frac{0.8V * (R_1 + R_2)}{\sqrt{2} * R_2}$$
$$V_{\text{Line}_\text{BOP}_\text{exit}} = \frac{0.925V * (R_1 + R_2)}{\sqrt{2} * R_2}$$

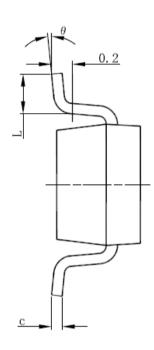
By adjusting the resistor ratio, the window between brownout trigger voltage and exit voltage can be programmed.

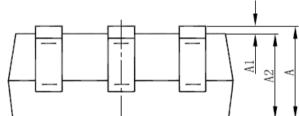
VDD OVP(Over Voltage Protection) with Latch Shutdown

VDD OVP (Over Voltage Protection) is implemented in SF5565M and it is a protection of **latch shutdown** mode.

Pin Floating Protection


In SF5565M, if pin floating situation occurs, the protection is triggered immediately and the system will experience the process of auto-recovery mode protection.


• Soft Gate Drive


SF5565M has a fast totem-pole gate driver with 500mA capability. Cross conduction has been avoided to minimize heat dissipation, increase efficiency, and enhance reliability. An internal 16V clamp is added for MOSFET gate protection at higher than expected VDD input. A soft driving waveform is implemented to minimize EMI.

PACKAGE MECHANICAL DATA

SOT-23-6L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min 💋	Max	Min	Max	
A	1.000	1.300	0.039	0.051	
A1	0.000	0.150	0.000	0.006	
A2	1.000	1.200	0.039	0.047	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.800	3.020	0.110	0.119	
E	1.500	1.700	0.059	0.067	
E1/	2.600	3.000	0.102	0.118	
e	0.950 (BSC)		0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

SiFirst Technology Nanhai, Ltd (SiFirst) reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

SiFirst warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with SiFirst's standard warranty. Testing and other quality control techniques are used to the extent SiFirst deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

SiFirst assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using SiFirst's components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of SiFirst's information in SiFirst's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. SiFirst is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of SiFirst's products or services with statements different from or beyond the parameters stated by SiFirst for that product or service voids all express and any implied warranties for the associated SiFirst's product or service and is an unfair and deceptive business practice. SiFirst is not responsible or liable for any such statements.

SiFirst's products are neither designed nor intended for use in military applications. SiFirst will not be held liable for any damages or claims resulting from the use of its products in military applications.

SiFirst's products are not designed to be used as components in devices intended to support or sustain human life. SiFirst will not be held liable for any damages or claims resulting from the use of its products in medical applications.